A set of Common Service Quality Assurance
Baseline Criteria for Research Projects

c~

A DOl-citable version of this manuscript is available at https.//doi.org/10.20350/digital CSIC/12533.

Authors

¢ Pablo Orviz
® 0000-0002-2473-6405 - €) orviz
Spanish National Research Council (CSIC); Institute of Physics of Cantabria (IFCA)

e Mario David
@ 0000-0003-1802-5356 -) mariojmdavid
Laboratory of Instrumentation and Experimental Particle Physics (LIP)

¢ Jorge Gomes
@ 0000-0002-9142-2596 - € jorge-lip

Laboratory of Instrumentation and Experimental Particle Physics (LIP)

e Joao Pina
@ 0000-0001-8959-5044 -) jopina

Laboratory of Instrumentation and Experimental Particle Physics (LIP)

e Samuel Bernardo
@ 0000-0002-6175-4012 - () samuelbernardolip
Laboratory of Instrumentation and Experimental Particle Physics (LIP)

¢ Isabel Campos
@ 0000-0002-9350-0383 - () isabel-campos-plasencia
Spanish National Research Council (CSIC); Institute of Physics of Cantabria (IFCA)

¢ German Molté
@ 0000-0002-8049-253X -) gmolto
Universitat Politécnica de Valéncia (UPV)

¢ Miguel Caballer
@ 0000-0001-9393-3077 * €) micafer

Universitat Politécnica de Valéncia (UPV)

¢ Vyacheslav Tykhonov
@ 0000-0001-9447-9830 -) 4tikhonov
DANS-KNAW

https://doi.org/10.20350/digitalCSIC/12533
https://orcid.org/0000-0002-2473-6405
https://github.com/orviz
https://orcid.org/0000-0003-1802-5356
https://github.com/mariojmdavid
https://orcid.org/0000-0002-9142-2596
https://github.com/jorge-lip
https://orcid.org/0000-0001-8959-5044
https://github.com/jopina
https://orcid.org/0000-0002-6175-4012
https://github.com/samuelbernardolip
https://orcid.org/0000-0002-9350-0383
https://github.com/isabel-campos-plasencia
https://orcid.org/0000-0002-8049-253X
https://github.com/gmolto
https://orcid.org/0000-0001-9393-3077
https://github.com/micafer
https://orcid.org/0000-0001-9447-9830
https://github.com/4tikhonov

Abstract

The purpose of this document is to define a set of quality standards, procedures and best practices to
conform a Service Quality Assurance plan, to serve as a reference within the European research
ecosystem related projects for the adequate development, deployment, operation and integration of
services into production research infrastructures.

Copyright Notice

Copyright © Members of the EOSC-Synergy collaboration, 2019-2021.

Acknowledgements

The EOSC-Synergy project received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement number 857647.

European
Commission

Issue
vO0.1
v0.2
v1.0-beta03

v1.0

v2.0

v2.1

Document Log

27/04/2020
28/02/2020
09/06/2020
12/06/2020

02/02/2022

09/11/2022

Date

Comment
First draft version
Second draft version
beta03 draft version
v1.0 release

Issues: #6, #15, #23, #25, #27, #28, #29, #30, #31,
#32, #33, #34, #35, #36

Issues: #43, #47, #49, #50

1. Introduction

The Open Science realization in Europe is implementing the European Open Science Cloud (EOSC).
The EOSC aims at providing researchers with a unique, federated and inclusive view of fit-for-purpose
services, developed and operated by the diverse European research infrastructures, including the
underlying e-Infrastructures. Consequently, the ultimate success of the EOSC heavily relies on the
quality aspects of those services, such as their stability or functional suitability.

The meaning of Service can be regarded from different perspectives. From an IT Service Management
(ITSM) standpoint, such as the EOSC Service Management System (SMS) process model, a Service is
devised as a means to “provide value to the customer”. The same goal is shared by the DevOps
paradigm, but in this case there is a more pragmatic vision that the customer satisfaction is achieved
through the continuous delivery of quality-assured Services, with a shorter life cycle, as the final
outcome of a comprehensive software development process.

The ITSM model has a broader focus. A Service is an “intangible asset” that also includes additional
activities such as customer engagement and support. Consequently, it is a much heavier process that
might not be appropriately applicable for all types of Services. The DevOps model, on the other hand,
narrows down the scope to meet the user expectations by acting exclusively on the quality features of
the Service, which is seen as an aggregate of software components in operation.

2. Purpose

This document provides an initial approach to Service Quality Assurance, meant to be applied in the
integration process of the Services existing under the EOSC-Synergy project, which eventually will be
accessible as part of the EOSC offerings.

The criteria compiled in this document favours a pragmatic and systematic approach, putting
emphasis on the programmatic assessment of the quality conventions. As such, the criteria herein
compiled builds on the DevOps culture already established in the Software Quality Assurance baseline

document [1], to outline the set of good practices that seek the usability and reliability of Services,
and meet the user expectations in terms of functional requirements.

3. Contextualization of a Service

As a result, a Service, as conceived in this document, represents the following:
o Web Service [2]:

o A Web Service is an application or data source that is accessible via a standard web protocol
(HTTP or HTTPS).

o Web Services are designed to communicate with other programs, rather than directly with
users.

o Most Web Services provide an API, or a set of functions and commands, that can be used to
access the data.

e Web Application [3]:

o A Web Application or “Web App” is a software program that is delivered over the Internet and is
accessed through a web browser.

e Platform / Service Composition [4]:

o Aggregation of multiple small services into larger services, according to a service-oriented (SOA)
and/or microservices architecture.

o Anintegrated set of Web Services, Web Applications and software components.

Examples are: Web portals, Scientific portals and gateways, data repositories.

4. Goals

The herein proposed baseline, harnesses the capabilities of the quality factors in the underlying
software to lay out the principles for attaining quality in the enabled services within the EOSC context.
According to this view, service quality is the foundation to shape user-centric, reliable and fit-for-
purpose services.

The Service Quality baseline aims at fulfilling the following goals:

1. Complement with a DevOps approach the existing approaches to assess and assure the quality
and maturity of services within the EOSC, i.e. Technology Readiness Levels (TRLs) and EOSC Service
Management System (SMS).

2. Build trust on the users by strengthening the reliability and stability of the services, with a focus on
the underlying software, thus ensuring a proper realization of the verification and validation

processes.

3. Ensure the functional suitability of the service by promoting testing techniques that check the
compliance with the user requirements.

4. Improve the usability by identifying the set of criteria that fosters the service adoption.

5. Promote the automated validation of the service quality criteria.

5. Notational Conventions

The keywords “MUST”, “MUST NOT", “REQUIRED", “SHALL", “SHALL NOT", “SHOULD", “SHOULD NOT",
“RECOMMENDED", “MAY”, and “OPTIONAL" in this document are to be interpreted as described in RFC
2119 [5].

6. Quality Criteria - Automation

The following sections describe the quality conventions and best practices that apply to the
development, operation and integration phases of a Service with a production infrastructure for
research, such as the EOSC ecosystem. These guidelines rule the Service development and operation
process within the framework of the EOSC-Synergy project.

The criteria in this document complements the criteria described in the “Software Quality Assurance
baseline” [1], while following the same pragmatic DevOps approach of automation.

6.1. Deployment

6.1.1. Automated Deployment [SvcQC.Dep]

The automated deployment of Services implies the use of code to install and configure them in the
target infrastructures. Infrastructure as Code (laC) templates allow operations teams to treat service
provisioning and deployment in a similar fashion as developers manage the software code.

Consequently, 1aC enables the paradigm of immutable infrastructure deployment and maintenance,
where Services are never updated, but deprovisioned and redeployed. An immutable infrastructure
simplifies maintenance and enhances repeatability and reliability.

¢ [SvcQC.Dep01] A production-ready Service SHOULD be deployed as a workable system with the
minimal user or system administrator interaction leveraging laC templates.

e [SvcQC.Dep02] Any future change to a deployed Service SHOULD be done in the form of a new
deployment, in order to preserve immutable infrastructures.

e [SvcQC.Dep03] laC SHOULD be validated by specific (unit) testing frameworks for every change
being done.

o [SvecQC.Dep03.1] [aC (unit) tests MUST be idempotent.

6.2. Dynamic testing - Black box testing

6.2.1. API Testing [SvcQC.Api]

Web services commonly use application programming interfaces (APIs) to expose the available
features to external consumers, which can be either oriented to the end-user or suitable for machine-
to-machine communications.

Accurate implementation of a publicly-accessible API, is driven by a clearly defined specification. The
OpenAPI Specification (OAS) [6] provides the most suitable way to describe, compose, consume and
validate APIs. The following requirements assume the presence of such an API specification.

e [SvcQC.Api01] API testing MUST cover the validation of the features outlined in the specification
(aka contract testing).

o [SvcQC.Api01.1] Any change in the API not compliant with the OAS MUST NOT pass contract
testing.

o [SvecQC.Api01.2] The use of OAS SHOULD narrow down the applicable set of test cases to the
features described in the specification, avoiding unnecessary assertions.

e [SvcQC.Api02] API testing MUST include the assessment of the security-related criteria outlined in
SvcQC.Sec section.

¢ [SvcQC.Api03] API testing SHOULD involve the use of test doubles, such as mock servers or stubs,
that act as a validation layer for the incoming requests.

6.2.2. Integration Testing [SvcQC.Int]

Integration testing refers to the evaluation of the interactions among coupled Services or parts of a
system that cooperate to achieve a given functionality.

¢ [SvcQC.Int01] Whenever a new functionality is involved, integration testing MUST guarantee the
operation of any previously-working interaction with external Services.

o [SvecQC.Int01.1] When using APIs, contract testing MUST detect any disruption in the
communication between provider and consumer endpoints, through the validation of the API
specification SvcQC.ApiO1.

e [SvcQC.Int02] Integration testing MUST NOT rely on non-operational or out-of-the-warranty
services.

e [SvcQC.Int03] On lack of automation, ad-hoc pilot Service infrastructures and/or local testbeds
MAY be used to cope with the integration testing requirements.

¢ [SvcQC.Int04] In the presence of Cl environments, integration tests SHOULD be suitable for the
automated testing.

6.2.3. Functional tests [SvcQC.Fun]

Functional testing is a type of black-box testing. It involves the verification of the Service identified
functionality, based on requested requirements and agreed design specifications. This type of Service
testing focuses on the evaluation of the functionality that the Service exposes, leaving apart any
internal design analysis or side-effects to external systems.

¢ [SvcQC.Fun01] Functional testing SHOULD tend to cover the full scope -e.g. positive, negative,
edge cases- for the set of functionality that the Service claims to provide.

o [SveQC.Fun01.1] When using APIs, contract testing MUST detect any disruption in the features
exposed by the provider to the consumer, through the validation of the API specification.
SvcQC.ApiO1.

o [SveQC.Fun01.2] Functional tests SHOULD include the Web Interface or Graphical User
Interface (GUI) of the Service.

¢ [SvcQC.Fun02] Functional tests SHOULD be checked automatically.

e [SvcQC.Fun03] Functional tests SHOULD be provided by the developers of the underlying
software.

6.2.4. Performance tests [SvcQC.Per]

Performance testing verifies that the software meets the specified performance requirements and
assesses performance characteristics - for instance, capacity and response time [7].

Stress or Load testing, exercises software at the maximum design load, as well as beyond it, with the
goal of determining the behavioral limits, and to test defense mechanisms in critical systems [7].
Stress testing is a subset of Performance testing [8].

Scalability testing is a test methodology in which an application’s or Service performance is measured
in terms of its ability to scale up and/or scale out the number of user requests or other such
performance measure attributes, through an increase in the amount of available resources. The
definition is based on [9]. Scalability testing is a subset of Performance testing.

Elasticity is based on how quickly Services in an infrastructure are able to adapt [9], in response to
variable demand or workload for those service(s) [10]. Elasticity testing is a subset of Performance
testing.

e [SvcQC.Per01] Performance testing SHOULD be carried out to check the Service performance
under varying loads.

e [SvcQC.Per02] Stress testing SHOULD be carried out to check the Service to determine the
behavioral limits under sudden increased load.

e [SvcQC.Per03] Scalability testing MAY be carried out to check the Service ability to scale up or
scale down when its load reaches the limits.

e [SvcQC.Per04] Elasticity testing MAY be carried out to check the Service ability to scale out or scale
in, depending on its demand or workload.

6.2.5. Security [SvcQC.Sec]

Security assessment is essential for any production Service. While an effective implementation of the
security requirements applies to every stage in the software development life cycle (SDLC) -especially
effective at the source code level, as discussed in [1], section Security [SQA-QC.Sec]-, the security
testing of a Service is also -similarly to the diverse testing strategies previously covered- a black-box
type of testing. Hence, this section focuses on the runtime analysis of security-related requirements,
as part of the Dynamic Application Security Testing (DAST) as well as the Interactive Application
Security Testing (IAST).

Additionally, the compliance with security policies and regulations complements the analysis, which
can be implemented, continuously validated and monitored through the Security as Code (SaC)
capabilities. SaC is a particularly suitable tool for endorsing security of Service Composition
deployments.

e [SvcQC.Sec01] The Service public endpoints and APIs MUST be secured with data encryption.

o [SvcQC.Sec01.1] The Service MUST use strong ciphers for data encryption.

¢ [SvcQC.Sec02] The Service SHOULD have an authentication mechanism.

o [SvcQC.Sec02.1] Whenever dealing with a Service Composition, such as microservice

architectures, the Services SHOULD be managed by a centralized authentication mechanism.

o [SvecQC.Sec02.2] In publicly-accessible APIs, Service authentication SHOULD be handled

through an API gateway in order to control the traffic and protect the backend services from
overuse.

[SvcQC.Sec03] The Service SHOULD implement an authorization mechanism.

o [SvcQC.Sec03.1] In Service Composition environments, the authorization mechanism SHOULD

uniquely grant the essential access permissions for each Service according to the Principle of
Least Privilege (PoLP).

[SvcQC.Sec04] The Service MUST validate the credentials and signatures.

o [SvcQC.Sec04.1] Credentials used in the Service MUST be signed by a recognized and trusted

certification authority.

[SvcQC.Sec05] The Service MUST handle personal data in compliance with the applicable
regulations, such as the General Data Protection Regulation (GDPR) within the European
boundaries.

[SvcQC.Sec06] The Service SHOULD be audited in accordance with the black-box testing criteria
identified by de-facto (cyber)security standards and good practices.

o [SvcQC.Sec06.1] Dynamic application security testing (DAST) checks MUST be executed, through

the use of ad-hoc tools, directly to an operational Service in order to uncover runtime security
vulnerabilities and any other environment-related issues (e.g. SQL injection, cross-site scripting
or DDQOS). The latest release of OWASP's Web Security Testing Guide [11] and the NIST's
Technical Guide to Information Security Testing and Assessment [12] MUST be considered for
carrying out comprehensive Service security testing.

[SvcQC.Sec06.2] Interactive Application Security Testing (IAST) [13], analyzes code for security
vulnerabilities while the app is run by an automated test. IAST SHOULD be performed to a
service in an operating state.

[SvcQC.Sec06.3] Penetration testing (manual or automated) MAY be part of the application
security verification effort.

[SvcQC.Sec06.4] The security assessment of the target system configuration is particularly
important to reduce the risk of security attacks. The benchmarks delivered by the Center for
Internet Security (CIS) [14] and the NIST’s Security Assurance Requirements for Linux Application
Container Deployments [15] MUST be considered for this task.

¢ [SvcQC.Sec07] laC testing, from SvcQC.Dep02 criterion, MUST cover the security auditing of the laC

templates (SaC) in order to assure the deployment of secured Services. For all the third-party
dependencies used in the [aC templates (including all kind of software artifacts, such as Linux
packages or container-based images):

o [SveQC.Sec07.1] SaC MUST perform vulnerability scanning of the artefact versions in use.

[SvcQC.Sec07.2] SaC SHOULD verify that the artifacts are trusted and digitally signed.

[SvcQC.Sec07.3] SaC MUST scan laC templates to uncover misalignments with widely accepted
security policies from SvcQC.Sec06 criteria, such as non-encrypted secrets or disabled audit
logs.

[SvcQC.Sec07.4] SaC MAY be used to seek, in the laC templates, for violations of security
requirements outlined in the applicable regulations from criterion SvcQC.Sec05.

[SvcQC.Sec07.5] World-writable files SHOULD NOT be created while the service is in operation.
Whenever they are required, the relevant files MUST be documented.

[SvcQC.Sec07.6] World-readable files MUST NOT contain passwords.

7. Quality Criteria - Operational

This section describes the operational quality criteria that is not fit for automation, but that contribute
to the assessment of the quality of the service when it's in an operational production state.

7.1. Files and documents

7.1.1. Documentation [SvcQC.Doc]

Documentation is an integral part of any Software or Service. For example, it describes how and what
users can use and interact with it, or how operators can deploy, configure and manage a given
Software or Service.

[SvcQC.Doc01] Documentation MUST be available online, easily findable and accessible.
¢ [SvcQC.Doc02] Documentation SHOULD have a Persistent Identifier (PID).
e [SvcQC.Doc03] Documentation MUST be version controlled.

e [SvcQC.Doc04] Documentation MUST be updated on new Service versions involving any change in
the installation, configuration or behavior of the Service.

e [SvcQC.Doc05] Documentation MUST be updated whenever reported as inaccurate or unclear.
¢ [SvcQC.Doc06] Documentation SHOULD have a non-software license.

e [SvcQC.Doc07] Documentation MUST be produced according to the target audience, varying
according to the Service specification. The identified types of documentation and their
RECOMMENDED content are:

o [SveQC.Doc07.1] Deployment and Administration:

= |nstallation and configuration guides.

= Service Reference Card, with the following RECOMMENDED content:
= Brief functional description.
= List of processes or daemons.
= |nit scripts and options.
= List of configuration files, location and example or template.
= Log files location and other useful audit information.
= List of ports.

» Service state information.

= List of cron jobs.
= Security information.
= FAQs and troubleshooting.
o [SvcQC.Doc07.2] User:
= Detailed User Guide for the Service.
= Public APl documentation (if applicable).

= Command-line (CLI) reference (if applicable).

7.1.2. Policies [SvcQC.Pol]

Policy documents describe what are the user’s expected behavior when using the Service, how they
can access it and what they can expect regarding privacy of their data.

¢ [SvcQC.Pol01] The Service MUST include the following policy documents:

o [SvcQC.Pol01.1] Acceptable Usage Policy (AUP): Is a set of rules applied by the owner, creator or
administrator of a network, Service or system, that restrict the ways in which the network,
Service or system may be used and sets guidelines as to how it should be used. The AUP can
also be referred to as: Acceptable Use Policy or Fair Use Policy.

o [SvecQC.Pol01.2] Access Policy or Terms of Use: represent a binding legal contract between the
users (and/or customers), and the Provider of the Service. The Access Policy mandates the
users (and/or customers) access to and the use of the Provider’s Service.

o [SveQC.Pol01.3] Privacy Policy: Data privacy statement informing the users (and/or customers),
about which personal data is collected and processed when they use and interact with the
Service. It states which rights the users (and/or customers) have regarding the processing of
their data.

7.2. Support

7.2.1. Support [SvcQC.Sup]

Support is the formal way by which users and operators of the Service communicate with other
operators and/or developers of the Service in case of problems, be it operational problems or bugs in
the Service or underlying Software. Reporting of enhancements, improvements and documentation
issues.

e [SvcQC.Sup01] The Service MUST have a tracker or helpdesk for operational and users issues.

e [SvcQC.Sup02] The Service SHOULD have a tracker for the underlying software issues [1], section
[SQA-QC.Man01].

e [SvcQC.Sup03] The Service SHOULD include an Operational Level Agreement (OLA) with the
infrastructure where it is integrated.

¢ [SvcQC.Sup04] The Service MAY include Service Level Agreement (SLA) with user communities.
7.3. Monitoring and Metrics

7.3.1. Monitoring [SvcQC.Mon]

Monitoring is a periodic testing of the Service. It requires a monitoring service from where tests are
executed or sent and results of those tests are shown. The tests can be the same, in part or in total of
the Functional, Security and Infrastructure tests. The technology used for the monitoring is left to the
developers of the underlying software to decide eventually with input from the infrastructure(s),
where the Service is foreseen to be integrated.

e [SvcQC.Mon01] The Service in an operational production state SHOULD be monitored for
functional-related criteria:

o [SveQC.Mon01.1] The Service public endpoints MUST be monitored.

o [SveQC.Mon01.2] The Service public APIs MUST be monitored. Use functional tests of criteria
SvcQC.Fun01.1.

o [SvcQC.Mon01.3] The Service Web interface MAY be monitored. Use functional tests of criteria
SvcQC.Fun01.2.

¢ [SvcQC.Mon02] The Service MUST be monitored for security-related criteria:

o [SvcQC.Mon02.1] The Service MUST be monitored for public endpoints and APIs secured and
strong ciphers for encryption. Use Security tests of criteria SvcQC.SecO1.

o [SvcQC.Mon02.2] The Service SHOULD be monitored with DAST checks. Use Security tests of
criteria SvcQC.Sec06.1.

¢ [SvcQC.Mon03] The Service MUST be monitored for infrastructure-related criteria:

o [SveQC.Mon03.1] l1aC (unit) tests SvcQC.Dep02 SHOULD be reused as monitoring tests, thus
avoiding duplication.

7.3.2. Metrics [SvcQC.Met]

A metric is a quantifiable measure used to track and assess the status of a specific process.

In the case of Services, some relevant metrics are the number of users registered in the Service, or of
active users. Also accounting is important to track resource usage per user or group of users, either or

both computing and storage resources.

Although the metrics may be published in external services managed by the infrastructure, this is a
common case in federated infrastructures such as EOSC.

e [SvcQC.Met01] The Service SHOULD implement the collection of metrics.

o [SvcQC.Met01.1] The collection of metrics SHOULD be cumulative over time and timestamped,
so that the values can be queried per time interval.

[SveQC.Met01.2] The metric Number of registered users SHOULD be collected.

[SveQC.Met01.3] The metric Number of active users over a given period of time MAY be
collected.

[SveQC.Met01.4] The metric Amount of computing resources per user or per group MAY be
collected. The metric unit depends on the type of service and infrastructure. An example is CPU
x hours.

[SveQC.Met01.5] The metric Amount of storage resources per user or per group MAY be
collected. The metric unit depends on the type of service and infrastructure. An example is
TByte x month.

7. Glossary

API

Application Programming Interface
AUP

Acceptable Usage Policy
CLI

Command Line Interface
DAST

Dynamic Application Security Testing
EOSC

European Open Science Cloud
GDPR

General Data Protection Regulation
GUI

Graphical User Interface
laC

Infrastructure as Code
IAST

Interactive Application Security Testing
ITSM

IT Service Management
NIST

National Institute of Standards and Technology
OAS

OpenAPI Specification
OLA

Operational Level Agreement
OWASP

Open Web Application Security Project
PID

Persistent Identifier
PoLP

Principle of Least Privilege
SaC

Security as Code
SDLC

Software Development Life Cycle
SLA

Service Level Agreement
SMS

Service Management System
SOA

Service Oriented Architecture
VCS

Version Control System

A1. Annex

The Quality Criteria described in this document follows a technology-agnostic approach. As such the
choice of tools and services to implement the workflow for service quality assessment process, is up
to the team or community developing or operating a given service.

This annex describes an implementation approach to help service developers and operators, cover
the Quality Criteria detailed in this document.

A1.1. Code workflow

The workflow for service quality assessment, is shown in Figure 1. It depicts a real case example,
GitHub is used in particular to host the Dockerfiles to build the service Docker image, it also hosts the
Ansible role for the service deployment and configuration, thus the laC (Infrastructure as Code).

The SQA as a Service (SQAaaS), is used to create the Jenkinsfile (pipeline) to be executed in the Jenkins
service.

Before the Jenkins pipeline execution phase, the figure depicts the build and upload/publish of the
service Docker image in the Docker Hub.

The Jenkins service is the main service used to execute he pipeline. The figure show a simple pipeline
with automated deployment of the service, execution of functional tests and dynamic security tests,
but in general the pipeline can be more complex and execute other tools to assess the other service
quality criteria.

The bottom part of the figure shows the services, tools and infrastructures that are actuated by the
Jenkins pipeline execution: The IM (Infrastructure Manager) is the service that is used to deploy the
service in cloud resources, fetching the corresponding Ansible role from Ansible Galaxy to instantiate
and configure it.

https://www.grycap.upv.es/im

Q github (laC)

..... N
k Dockerfile Ansible role

74
s

3
(]

o
T
]

Jenkins
pipeline
Deplo Testing - Black box
Functional tests Security
IMClient - TOSCA OWASP

SQA
-4 _/
]l R
“w.

aclts

e
docker build

Docker Hub t‘ - % i
- S ——
N Infrastructure 1 > o) o e =
Manager ® : E . =
0 Ry —

Figure 1: Workflow for service quality assessment

A1.2. Services

As it can be seen in Figure 1, multiple services take part in the execution of the CI/CD pipelines. Table
1 shows the list of services used for the service for the Quality Criteria assessment detailed in this
document.

One of the most popular services for Software source code management is GitHub. It is uses Git as
the Version Control System, branching and tag management.

Ansible and Ansible-Galaxy are used in many software frameworks as deployment and configuration
tools.

The software is packed/built into executable artifacts that can be RPMs (case of RedHat and derivative
OS), DEBs (case of Debian/Ubuntu and derivatives) and in many cases containers such as Docker
images.

The artifacts are provided, in general, by public repositories and most notably Docker Hub [16/] in the
case of Docker images.

Regarding the CI/CD automation, Jenkins pipelines can be easily composed through the SQAaaS
platform and put into the git repositories to be used by the Jenkins Cl service to perform the tests. The
tools used in the Cl automation are shown in section A1.2.

Kubernetes is a container management platform where services or platforms can be deployed while
the IM (Infrastructure Manager) can also be used to automatically deploy services both in cloud
resources or kubernetes clusters.

Repo URL or

Service Usage Criteria . Comment
documentation
GitHub VCS :‘:QC'D https://docs.github.com/ Source code repository - git
Ansible, Galaxy Install, Config SveQe.D https://docs.ansible.com/ Autgmateq SRR mEE e
ep configuration
SQAaas platform Pipeline composition | All https://sqaaas.eosc- Pipeline Fomposmon for
synergy.eu automatic tests
SQAaas platform Assess.ment & All https://sgaaas.eosc- Badge awarding
awarding synergy.eu
Jenkins Cl service Automated tests All https://www.jenkins.io/ Execution of automatic tests
Docker Hub Docker images N.A. https://hub.docker.com/ Pubhc e
images
Service .
Kubernetes deployment/manage SveQC.D https://kubernetes.io/ Docker container
ep management
ment
Infrastructure . SvcQC.D) . .
Manager (IM) Service deployment ep https://www.grycap.upv.es/im | Service deployment

Table 1: Tools and services used to implement the Service QA criteria, also shown the criteria where
applicable.

A1.3. Tools for CI/CD

This section shows the tools being used in the Cl pipelines and the criteria that it verifies. This list is
based on the template file in https://github.com/EOSC-synergy/sqa-composer-
templates/blob/main/tooling.json.

Languag

Tool Criteria o Repo URL or documentation Summary
kubectl SvcQC.Dep | Agnostic | https://kubernetes.io/docs/tasks/tools/ Automated deployment
. . RADL/TO : .)
im_client ' SveQC.Dep SCA https://imdocs.readthedocs.io/en/latest/client.html Automated deployment
ec3_client | SveQC.Dep SQEL/TO https://github.com/grycap/ec3 Automated deployment
tox SvcQC.Fun | Python https://tox.readthedocs.io/ e H2st

framework

https://docs.github.com/
https://docs.ansible.com/
https://sqaaas.eosc-synergy.eu/
https://sqaaas.eosc-synergy.eu/
https://www.jenkins.io/
https://hub.docker.com/
https://kubernetes.io/
https://www.grycap.upv.es/im
https://github.com/EOSC-synergy/sqa-composer-templates/blob/main/tooling.json
https://kubernetes.io/docs/tasks/tools/
https://imdocs.readthedocs.io/en/latest/client.html
https://github.com/grycap/ec3
https://tox.readthedocs.io/

10.

11.

12.

13.

References

A set of common software quality assurance baseline criteria for research projects
Pablo Orviz, Alvaro Lépez Garcia, Doina Cristina Duma, Giacinto Donvito, Mario David, Jorge
Gomes

(2017) https://digital.csic.es/handle/10261/160086

Web Service Definition https://techterms.com/definition/web service

Web Application Definition https://techterms.com/definition/web application

Service Composition - Glossary | CSRC
CSRC Content Editor
https://csrc.nist.gov/glossary/term/Service Composition

Key words for use in RFCs to Indicate Requirement Levels
Scott O Bradner
Internet Engineering Task Force (1997-03) https://datatracker.ietf.org/doc/rfc2119/

Home
OpenAPI Initiative
https://www.openapis.org/

Guide to the Software Engineering Body of Knowledge, Version 3.0
P Bourque, RE Fairley
(2014) http://www.swebok.org

Difference between Performance and Stress Testing

GeeksforGeeks

(2019-05-15) https://www.geeksforgeeks.org/difference-between-performance-and-stress-
testing/

Scalability, Elasticity, and Efficiency in Cloud Computing: a Systematic Literature Review

of Definitions and Metrics

Sebastian Lehrig, Hendrik Eikerling, Steffen Becker

Proceedings of the 11th International ACM SIGSOFT Conference on Quality of Software
Architectures (2015-05-04) https://doi.org/gghzfq

DOI: 10.1145/2737182.2737185 - ISBN: 9781450334709

Scalability analysis comparisons of cloud-based software services
Amro Al-Said Ahmad, Peter Andras

Journal of Cloud Computing (2019-12) https://doi.org/ggtz94

DOI: 10.1186/s13677-019-0134-y

WSTG - Stable | OWASP Foundation https://owasp.org/www-project-web-security-testing-
guide/stable/

Technical guide to information security testing and assessment.

KA Scarfone, MP Souppaya, A Cody, AD Orebaugh

National Institute of Standards and Technology (2008) https://doi.org/gnkq9h
DOI: 10.6028/nist.sp.800-115

What is IAST? Interactive Application Security Testing
Veracode

https://digital.csic.es/handle/10261/160086
https://techterms.com/definition/web_service
https://techterms.com/definition/web_application
https://csrc.nist.gov/glossary/term/Service_Composition
https://datatracker.ietf.org/doc/rfc2119/
https://www.openapis.org/
http://www.swebok.org/
https://www.geeksforgeeks.org/difference-between-performance-and-stress-testing/
https://doi.org/gghzfq
https://doi.org/10.1145/2737182.2737185
https://doi.org/ggtz94
https://doi.org/10.1186/s13677-019-0134-y
https://owasp.org/www-project-web-security-testing-guide/stable/
https://doi.org/gnkq9h
https://doi.org/10.6028/nist.sp.800-115
https://www.veracode.com/security/interactive-application-security-testing-iast

14.

15.

16.

https://www.veracode.com/security/interactive-application-security-testing-iast

CIS Benchmarks™
CIS
https://www.cisecurity.org/cis-benchmarks/

Security assurance requirements for linux application container deployments
Ramaswamy Chandramouli

National Institute of Standards and Technology (2017-10-11) https://doi.org/gnkq9g
DOI: 10.6028/nist.ir.8176

Docker https://hub.docker.com/

https://www.veracode.com/security/interactive-application-security-testing-iast
https://www.cisecurity.org/cis-benchmarks/
https://doi.org/gnkq9g
https://doi.org/10.6028/nist.ir.8176
https://hub.docker.com/

